Robust location algorithm based on weighted least- squares support vector machine (WLS-SVM) for non- line-of-sight environments
نویسندگان
چکیده
One of the main problems facing accurate location in wireless communication systems is non-line-ofsight (NLOS) propagation. Though learning location methods perform well in NLOS environments, learning location methods may be improved further since these methods do not consider outliers in the training data set. In this paper, we extend weighted least squares support vector machine (WLS-SVM) algorithm to mobile location problem. The proposed method can effectively suppress outliers with different weights. In simulation, we analyze the effects of the number of training points, the percentage of outliers in training data set, the standard deviation and mean of outliers, and the standard deviation of measurement error. Simulation results show that the proposed algorithm clearly outperforms three other algorithms (LS method, kernel method and LS-SVM based method).
منابع مشابه
OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملSustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...
متن کاملRobust Least Square Support Vector Regression for Contaminated Data Modeling
Weighted least squares support vector machine (WLSSVM) is a robust version of least squares support vector machine (LS-SVM). It adds weights on error variables to eliminate the influence of outliers. But the weights, which largely depend on the original regression errors from unweighted LS-SVM, might be unreliable for correcting the biased estimation of LS-SVM, especially for the training data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012